
2. WAVE PROPAGATION 

Abstract — This paper uses precise integration method in 
time domain (PITD) to simulate the electromagnetic transient 
behavior of the long nonuniform transmission line. This 
method does not have the Courant-Friedrichs-Lewyc (CFL) 
condition restrict which restrict the time step of FDTD 
method. It means in PITD method large time steps can be 
adopted to achieve accurate results efficiently. The main 
computation cont of this method is the calculation of the 
matrix exponential. In this paper, the matrix exponential 
integrator is computed using Krylov subspace method, and a 
scaling method is proposed to reduce the computation time of 
the matrix exponential. 

I. INTRODUCTION 
In the calculation of transient behavior on transmission 

line during the switching transient, modeling of the 
transmission line is very important to accurate results. 
Many models proposed before are based on uniform 
transmission line assumption. However, if considering the 
sagging of the transmission line, the parameters varies 
along the line; the nonuniform lines (NULs) model would 
be more accurate than uniform ones. 

Many literatures used FDTD method to solve NULs, 
because it can conveniently takes the variation of per-unit-
length parameters into account.  However, conventional 
FDTD method is restricted by CFL criterion. For stability 
of the calculation, the time step of the FDTD method is 
bounded by the wave travel time on one spatial segment. 
When using FDTD method to deal with the switching 
transient of the NULs, in order to reflect the longitude 
variation of the transmission line, the spatial step is not 
allowed to be big (usually less than one hundred meters), 
then the time step should be less than one microsecond. 
Due to the long duration of the switching transient 
(typically more than hundreds of milliseconds), the 
simulation should be performed in millions of time steps. 
For lossless line, the FDTD recursive solution is very fast, 
this number of time steps seems to be acceptable, but 
considering the extra cost brought by the handling of 
frequency dependent impedance on every single spatial 
segment, the computation time might be too long. In 
literature [3], ADI-FDTD is developed to avoid the CFL 
criterion. As for ADI-FDTD method, although it is free of 
CFL criterion, the severe numerical dispersion and splitting 
error inhibit its application [3].  

The PITD method [2], which is a semi-analytical 
method, neither has the CFL restrict nor is plagued by the 
severe numerical dispersion. However, the PITD method 
needs the calculation of the matrix exponential, which 

requires about O(n3) times of multiplication and O(n2) 
storage. The high computation cost prevents PITD’s 
application in simulating long nonuniform lines. This paper 
uses Krylov subspace to approximate the matrix 
exponential integrator. In order to reduce the times of 
iterations in the Arnoldi process, a scaling technique is 
proposed to improve the condition of the matrix. 

II. PRECISE INTEGRATION TIME DOMAIN SOLUTION OF 
LOSSY NONUNIFORM TRANSMISSION LINE 

The Telegrapher’s equation of single phase NULs is: 
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where v(x,t)and i(x,t) are the line-neutral voltage and the 
line current respectively, R(x), L(x), G(x) and C(x) are the 
per-unit-length parameters of NULs, respectively. 

Spatially discretizing the partial differential equations (1) 
and (2) in a way the same as FDTD method gives: 
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Arrange the voltage and current in one vector as X= 
[v1,i1,…,im,vm+1]T, the equations above can be given by: 

d X AX B
dt

= +                              (5) 

where A is a tridiagonal matrix and B= [2i0/C1,0,…,-
im+1/Cm+1]T is the inhomogeneous term. In this problem, B is 
dependent on the boundary conditions. The solution of (5) 
can be written as: 
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Discrete expression (6) in the time domain with the time 

step τ, and it can be solved in a recursive method: 
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In order to evaluate the integral in expression (7), we 
can simplify the inhomogeneous term B as a step wave 
function within each time step: 
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where r0 and r1 are known vectors. As in switching 
transient, the frequency of is not very high, this assumption 
can be quite reasonable for practical application. 

Substituting (8) into (7), the time-step integration 
expression can be transformed into the recursive form 
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When the initial value is given, the state variable X can 
be calculated in this recursive way. 

III. EFFICIENT COMPUTATION OF THE MATRIX 
EXPONENTIAL OPERATOR 

The main computation cost of evaluating the above 
formula comes from calculating the term of eAtv. Inspired 
by the solution of large scale linear equation system, in [1] 
a method based on Krylov space approximation is proposed 
to calculate exp( )A vτ instead of the direct calculation. The 
basic idea of this method is to approximate exp( )A vτ in 
Krylov subspace built by Arnoldi process. 

Method of Krylov subspace for matrix exponential is 
first proposed and discussed is [4]. The basic idea of this 
method is to approximate matrix exponential with matrix 
polynomial taken from Krylov subspace. 
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where m is the dimension of Krylov subspace, and mK  is 
an orthonormal basis of Krylov subspace which is built by 
Arnoldi process. 

Aroldi process also produces an upper Hassenburg 
matrix Hm, and we have approximation of the matrix 
exponential 
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where ( )vβ = . 

For exp( )A vτ , the formula above can be written as: 
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This immediately raises a question concerning the 

quality of this approximation.  In [5], Saad proved the error 
of the approximation (12) is: 
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where Aρ = . 

However, matrix A is not a well-conditioned matrix, 
because its elements, namely, 1/C and 1/L, differ from each 
other significantly. The bad condition of matrix A will 
make the computation of matrix exponential very 
inefficient. 

In order to reduce the spectral radius of the coefficient 
matrix and accelerate the computation of the matrix 
exponential, this paper developed a scaling process to the 
matrix. The scaling scheme is: 

1. Scale ik to ik’= aik, where a is 1/C, then the state 
variable becomes X’= [v1,ai1,…,aim,vm+1]T and the 
basic units of the matrix becomes 1/aCk and a/Lk. 

2. Solve the state equation ' ' ' 'd X A X B
dt

= +  

3. Calculate ik= ik’/a. 

IV. CALCULATION EXAMPLE AND COMPARISON WITH 
FDTD METHOD 

In the example, the method proposed above is used to 
study a typical switching transient problem, as shown in fig. 
5. The input voltage source is a 1V sinusoidal wave of 
50Hz with the initial phase 70o. The length of the 
transmission line is 240km and the distance between each 
two neighbor towers is 600m. The sagging of the line is 
24m and the top of the line is 40m high from the ground. 

The transient voltages at the near end of the 
transmission lines are depicted in Fig.1. 
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Fig.1. calculation results with FDTD and PITD method 
 

From this example, we can get the conclusion that PITD 
method is enough accurate to solve switching transient of 
the transmission lines. 
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